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Abstract. Mass spectrometry spectra are recognized as a screening tool for detecting discrimina-
tory protein patterns. Mass spectra, however, are high dimensional data and a large number of local
maxima (a.k.a. peaks) have to be analyzed; to tackle this problem we have developed a three-step
strategy. After data pre-processing we perform an unsupervised feature selection phase aimed at
detecting salient parts of the spectra which could be useful for the subsequent classification phase.
The main contribution of the paper is the development of this feature selection and extraction pro-
cedure grounded on the theory of multi-scale spaces. Then we use support vector machines for
classification. Results obtained by the analysis of a data set of tumor/healthy samples allowed us
to correctly classify more than 95% of samples. ROC analysis has been also performed.

1 Introduction
SELDI-TOF (Surface-Enhanced Laser Desorption and Ionization Time-Of-Flight) technology

is considered a modified form of MALDI-TOF (Matrix-Assisted Laser Desorption and Ionization
Time-Of-Flight). According to these techniques, proteins are co-crystallized with UV-absorbing
compounds, then a UV laser beam is used to vaporize the crystals, and ionized proteins are then
accelerated in an electric field. The analysis is then completed by the TOF analyzer. Differences
in the two technologies, which reside mainly in the sample preparation, make SELDI-TOF more
reliable for biomarkers discovery and other proteomic studies in biomedicine. The proteomic char-
acterization by means of TOF (both SELDI and MALDI) technologies of samples from individuals
is considered to carry information about the healthy or pathological state of the individual. In fact,
samples as serum, plasma, and other kinds of extracts contain proteins for which the covalent
structure may be modified in specific pathologies, which may induce modifications as glycation
or methylation, which imply the addition of a small molecule to the protein, or may alterate and
prevent expected modifications. In any of these cases, the proteomes of samples by an healthy indi-
vidual and an affected individual should be discernible, being their mass profile altered. Therefore,
among the thousands of proteins and peptides present in a serum sample, which represent its pro-
teome, few key signals may be significant markers of the pathological state, and their search within
the proteome represents a still open field of research.

Data produced by mass spectrometry (the spectra) are represented by a (typically) very large
set of measures representing the quantity of biomolecules having specific mass-to-charge (m/z)
ratio values. Given the high dimensionality of spectra, given their different length and since they
are often affected by errors and noise, preprocessing techniques are mandatory before any data
analysis.

After preprocessing (to correct noise and reduce dimensionality), several statistical and artificial
intelligence based technologies could be used for mining these data. In [Petricoin III et al., 2002],
for example, genetic algorithms and self organizing maps were used to distinguish between healthy
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women and those affected by ovarian cancer. Support Vector Machines (combined with Particle
Swarm Optimization) have been used [Ressom et al., 2005] to distinguish cancer patients from
non-cancer controls. Principal Component Analysis has been used for dimensionality reduction
followed by linear discriminant analysis on SELDI spectra of human blood serum [Lilien et al., 2003].
Several statistical methods have been compared in [Wu et al., 2003]. Nearest centroid classifica-
tion has been used in several applications; in [Wu et al., 2003], for example, it is used for protein
mass spectrometry while ant colony optimization has been used [Ressom et al., 2007] for peak
selection from MALDI-TOF spectra. Independent component analysis has been recently used
[Mantini et al., 2008] for the extraction of protein signals profiles.

In this paper we first describe a method we have implemented to extract features describing the
spectra. Principal Component Analysis has been then used to further reducing features dimension-
ality and finally a Support Vector Machine (SVM) has been applied for classification obtaining
very interesting results. The experimental data analyzed were derived from a study on women af-
fected and unaffected by ovarian cancer. The serum samples were analyzed, as described in detail
in the article by Petricoin et al. ([Petricoin III et al., 2002]), by mass spectrometry techniques, in
particular by SELDI-TOF.

The paper is organized has follows. In section 2 we describe data preprocessing, features extrac-
tion/reduction and classification; then, in section 3, we describe experimental results while final
discussion, some conclusions and future work are the concerns of section 4.

2 Data Preparation and Classification
2.1 Data Preprocessing
Before the feature selection phase, there is a preprocessing step aimed at homogenization and

correction of the spectra data. The spectral data produced by a single laser shot in a mass spectrom-
eter consists of a vector of counts. Each count represents the number of ions hitting the detector
during a small, fixed interval of time. A complete spectrum is acquired within tens of millisec-
onds, so a typical spectrum is a vector containing between 10000 and 100000 entries. In practice,
most mass spectrometers produce spectra by averaging the counts over many individual laser shots.
Thus, the raw data produced by running a sample through a mass spectrometer can best be thought
of as a time series vector containing tens of thousands of real numbers. Unless an entry in the vec-
tor is known to represent an actual count of the number of ions, it is usually just called an intensity
and is assumed to be measured in continuous arbitrary units. Peaks in a plot of the intensity as a
function of time represent the proteins or peptides that are present in the sample. A typical data
set arising in a clinical application of mass spectrometry contains tens or hundreds of spectra; each
spectrum contains many thousands of intensity measurements representing an unknown number
of protein peaks. Any attempt to make sense of this volume of data requires extensive low-level
processing in order to identify the locations of peaks and to quantify their sizes accurately. Inade-
quate or incorrect pre-processing methods, however, can result in data sets that exhibit substantial
biases and make it difficult to reach meaningful biological results. In our experiments we applied
the following preprocessing steps:

• resampling: Gaussian kernel reconstruction of the signal in order to have a set of d-dimensional
vectors with equally spaced mass/charge values;

• baseline correction: removes systematic artifacts, usually attributed to clusters of ionized
matrix molecules hitting the detector during early portions of the experiment, or to detector
overload;

• normalization: corrects for differences in the total amount of protein desorbed and ionized
from the sample plate.
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All the above steps were implemented and applied by using the MATLAB programming envi-
ronment and the Bioinformatics Toolbox.

2.2 Feature Selection
The feature selection and description is crucial for mass spectrometry since subsequent analysis

are performed only on the selected features. Several methods have been proposed which often rely
on biased data sets and can reach biological conclusion difficult to be interpreted [Baggerly and et al., 2004,
Sorace and Zhan, 2003]. Peak detection is the traditional method for extracting features and sev-
eral techniques to identify peaks among the background noise have been proposed (see for example
[Tibshirani et al., 2004]). Recently model based approaches have been revaluated for the phase of
feature selection of mass spectra data [Noy and Fasulo, 2007] claiming that this approach can give
a better representation of the MS signals by incorporating information about peaks shapes ans
isotropic distributions. The models based methods typically perform a huge number of regressions
to fit signal models to spectra. Here we adopt a hybrid method which is fast just as the peak selec-
tion methods, and at the same time tries to model the average spectrum at various scales. The basic
principle adopted for the selection of features relies on the scale space theory of signal analysis
[Witkin et al., 1987, Lindeberg, 1994]. The main idea of a scale-space representation is to gener-
ate a one-parameter family of derived signals in which the fine-scale information is successively
suppressed. The main property of a scale-space analysis is the causality principle, which states
that each feature at a given scale must have a cause at a previous scale. This principle preserves
peaks or other feature to be artificially introduced through scales and forces the analysis to be from
finer scale to coarser scales.

We assume that the peaks can be (in some way) profitably used to describe the spectrum it-
self; when, however, two peaks are too close they should be considered as a single maximum.
Therefore the multiscale analysis can help in observing the same signal at coarser scales for fea-
ture detection and signal matching purposed [Witkin et al., 1987] as the scale increases the signal
becomes coarser. Here we adopt a linear scale space which is implemented through a Gaussian
kernel [Lindeberg, 1994]. In particular, here the scale is just the maximum width, σ, of the Gaus-
sian kernel used to filter the signal. As can be seen in figure 1, some peaks collapses in a single
local maximum. Clearly, as σ increases, we have smother versions of our spectra. Our feature
selection phase is based on the mean of the signals at the maximum chosen scale. In particular, the
local maxima of the mean of the smoothed signals are considered as the locations of the considered
peaks to be used as features, see figure 2. Finally, each spectrum will be described by the mean
value assumed by the original spectrum in window centered in each of the selected local maxima.

As the value of sigma increases the number of extracted features decreases, for example, at
a scale of 0.1 we have 156 local maxima of the mean smoothed spectrum, whereas at scale 1.0
we have just 23 components. Therefore, as a last feature extraction step we perform a principal
component analysis for dimensionality reduction (see figure 3).

2.3 Classification
A learning machine is any of such functions’ estimation algorithm. The quality of the machine

is evaluated in terms of the mean classification error as the number of training samples goes to in-
finity. The machine acts as a classifier and what we want from such a classifier is that it generalizes
well, that is that it has a good balance between the capacity and the accuracy of the classifications
performed, the capacity being the possibility of learning any given set of labels and the accuracy
being the right classification’s percentage on the training data. Rather than a classifier that has the
best training accuracy, we want a classifier that do not over-fits training data and which generalize
well to unseen new data. There’s an extensive theoretical work on probability bounds on the actual
risk of misclassification of a pattern recognition learning machine and bounds on generalization
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Figure 1: A spectrum (dotted) end its regularized version

Figure 2: The curve obtained summing regularized spectra of cancer data (dotted) and the one one obtained summing
the healthy data. Circles on the m/z axis represent local maxima points.
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Figure 3: The data we have to classify: the first component against the second one.

performances are the subject of many institutional text books (i.e. [Vapnik, 1995]).
Support Vector Machine (SVM) is a technique proposed [Boser et al., 1992] for Pattern Recog-

nition and Data Mining classification tasks. While at present there exists no general theory that
guarantees good generalization performances of SVM, but only probability bounds on its perfor-
mance accuracy, there is a growing interest in this technique due to ample literature demonstration
of good performances in various heterogeneous fields [Schoelkopf et al., 1997].

The main advantage of SVM over, for example, Feed Forward Neural Networks, is that it has
no local minima problems and that it has less parameters to choose. So, although there is still
much study to do, i.e. in how to choose the kernel and how to extend the method to the multi-
label case [Hsu and Lin, 2002], we found reasonable to test the use of this method with our data.
Results reported below show very good generalization performances with our proteomic data,
giving another empirical argument to its potential powerful generalization properties.

2.3.1 Linear SVM

In the case of linearly separable patterns on two-classes vectors it is straightforward to show
the basic ideas of SVM: given a set of points in <k and a two-classes labels vector, SVM aims to
find a linear surface that splits them in two groups according to the indicated labels, in the best
possible way. Intuitively, if data are linearly separable (that is if it exists at least one hyperplane
that splits them in two group), the problem becomes how to define and how to find the best possible
hyperplane to do it. The SVM answer is that the best possible hyperplane is the one that maximizes
the margin, that is the one that has maximal distance from both sets of points (Figure 4).

To be more rigorous, the problem of finding the hyperplane that has maximal margin among two
sets of point differently labeled can be formulated as a constrained quadratic optimization problem

min(
1

2
‖w‖2) (1)

subject to:

yi(w
Txi + b) ≥ 1 (2)

5



Figure 4: Maximal margin principle on a set of two classes linearly separable samples

where yi ∈ {−1, 1} are classes labels, w is the normal to the hyperplane and 2/‖w‖is the margin,
that is the distance between both sets of points.

Its dual formulation with Lagrange Multipliers is the following:

max(LD =
∑

i

αi −
1

2

∑
i,j

αiαjyiyjxixj) (3)

subject to: ∑
i

αiyi = 0; αi ≥ 0 (4)

where αi are Lagrange Multipliers. This problem leads to the solution:

w =
∑

i

αiyixi (5)

∑
i

αiyi = 0; αi ≥ 0 (6)

We can note looking at the solution that the αi are nonzero only for data lying on the marginal
hyperplanes [Vapnik, 1995]. This fact has an important advantage: even removing a random subset
of points not lying on the marginal hyperplanes the classification’s result remains unchanged, so
the technique is robust against perturbation of non-marginal points. The name of “support vectors”
given to these points is due to this important property.

It can even happen that no hyperplane separates the given points. In this cases it is nonetheless
possible to apply the SVM method assigning a penalty to each point in the wrong class, the weight
of the penalty being a user-defined parameter. The optimization problem becomes to maximize:

LD =
∑

i

αi −
1

2

∑
i,j

αiαjyiyjxixj (7)

subject to: ∑
i

αiyi = 0; 0 ≤ αi ≤ C (8)
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where C is the “cost” of misclassified points. The only difference from the optimal hyperplane
case is that the αi now have an upper bound of C.

2.3.2 Nonlinear SVM

To generalize further, we could consider surfaces that are not linear and work on a different
model or we could project all data non linearly in another space (possibly with infinite dimen-
sion) where they are linearly separable and perform the classification linearly in this new space,
maintaining the method almost unchanged. In practice if we look at the optimization’s prob-
lem formulation, we see that data appear only in the form of dot products xi · xj and hence
data transformed through a function Φ : <k 7→ Γ (where Γ is a space of dimension h ≥ k)
appear also in the form of dot products Φ(xi) · Φ(xj). If we consider a dot product function
K(xi, xj) = Φ(xi) · Φ(xj) it is possible, in line of principle, to substitute K in formulae and to
compute the solution without even knowing the form of function Φ. Such a dot product function
is called Kernel. Whatever function that satisfies dot product’s constraints can be used as Kernel
function, and there is an active field o research in the choice of the most suitable kernel for a given
problem [Cristianini and Taylor, 2004].

Another aspect of SVM is that the above discussion about binary classifiers can be easily ex-
tended to multiclass problems. The two most common approaches to the extension to the multi-
label case are the ‘one-against-one’ and the ‘one-against-all’ [Ulrich, 1999, Hsu and Lin, 2002].
For multiclass-classification with k levels, k > 2, we have used the ‘one-against-one’ approach,
in which k(k − 1)/2 binary classifiers are trained and the appropriate class is found by a voting
scheme.

3 Experimental Results
In this paper we tested support vector machines [Burges, 1998] using radial basis functions as

kernel functions. In the following we will first describe the tuning of the system and then we will
analyze in details the performance of our classificator.

3.1 System Tuning
The whole performance of our approach of course depends on (at least) four parameters: the

variance σ of the Gaussian function, the size w of the window, the number n of principal compo-
nents to be considered and the variance v of the RBF kernel functions; thus we decided to perform
several tests having in mind to tune the whole system. Namely, we tested the classification perfor-
mance having σ varying in the interval [0.1:1], the window size varying in the interval [1:21], the
number of principal components used for classification varying in the interval [2:10] and v varying
in the interval [0.5:5]. For each parameters’ quadruplet k−fold (with k = 10) cross validation has
been used to test the generalization performance; here, as it is well known, the data set is divided
in k subsets and k trials are performed using one of the subsets as test sets and the remaining k− 1
subsets as training set. Each test has been repeated 10 times, so deriving that each quadruplet has
been tested 100 times: in this phase, the mean correct classification value has been clearly used as
quality measure.

The best mean correct classification rate (97%) has been obtained having σ = 0.1, a size of the
window equal to 3, using 8 components and having v = 3.

3.2 ROC Analysis
As it is well known, a receiver operating characteristics (ROC) graph is a technique for visual-

izing and selecting classifiers based on their performance [Fawcett, 2006]. As it is well known, a
ROC graph is a two-dimensional graph where on the X axis is plotted the false positive rate (FPR)
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Figure 5: The vertically averaged ROC curve.

and the true positive rate (TPR) is plotted on the Y axis, where:

TPR =
Positives correctly classified

Total positives
(9)

and

FPR =
Negatives correctly classified

Total negatives
(10)

Many classifiers are designed to produce just a class decision (say true or false) and so a single
confusion matrix thus deriving that these classifiers are represented by a single point in the ROC
space. Some classifiers, like SVM classifiers, produce, on the other hand, a score that is then
interpreted as the degree to which a given instance is a member of a class. Scoring classifiers are
typically used with a threshold to produce a binary classifier; for each threshold we have confusion
matrix and so a point in the ROC space, thus deriving a ROC curve.

According to [Fawcett, 2006], and considering the best system (i.e. the tuned one), we start
from the 10 test sets T1, T2, . . . , T10 using 10-folds cross validation. We perfomed this set 10 times
so obtaining 10 ROC graphs merged using vertical slicing [Fawcett, 2006]. Here each ROC graph
(Ri) is treated as a function TPR = Ri(FPR); the vertically averaged ROC curve is defined as
the function:

R̂(FPR) = mean(Ri(FPR)) (11)

Figure 5 shows the obtained graph. The area under the curve (AUC), proved to be equal the
probability that the classifier ranks a randomly chosen positive instance higher than an randomly
chosen negative instance, for our system is 0.986.
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4 Discussion
In this paper we presented a three-steps strategy for classifying SELDI spectra. After pre-

processing we described features’ extraction and classification by means of SVMs obtaining very
interesting results.

The features’ extraction we propose is worth to be emphasized; even if in the paper it has
been described without a strong theoretical formalism, the process we are using is heavily based
on multi-scale analysis and the results we have obtained demonstrate the goodness of such an
approach.

Several open problems need to be addressed. First of all, our method has to be tested with dif-
ferent data sets. Another problem we have to face is to compare our approach with other proposed
solutions; this is not a trivial problem since in many cases data sets are not available and/or the
software is not easy to be obtained, to be recoded or even compiled or simply used. Last, the brute
force method we have used to tune the system could be easily improved using exact, heuristic or
AI based techniques.
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