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Abstract— Transaction management in different application
contexts is still a challenging task. In this paper we propose a
novel method in order to improve concurrency of particular kind
of transaction, known as long running transactions. Differently
from other techniques presented in the literature, we design
a sort of hybrid approach between optimistic and pessimistic
concurrency models. From one hand, our basic idea consists
of handling frequent disconnections or inactivity periods of a
generic transaction during its life-cycle and, from the other
one, we consider the semantics related to operations produced
by transactions. First, our solution avoids an indefinite or long
resource locking due to disconnecting (or idle) transactions or a
high rate of preventive aborts; eventually, a transaction “semantic
compatibility” is exploited in order to increase the concurrency
reconcilable operations on the same resources. To these purposes,
we have implemented a middleware with the aims of emulating
a transactional scheduling, and several experiments have been
carried out.

I. INTRODUCTION

Traditional transaction management techniques are no
longer appropriate for a variety of application contexts [2],
[1], [16]. In particular, the lengthy transmission delay of
some networks, frequent and unpredictable disconnections,
long inactivity periods of users could affect transaction dura-
tion, generating long running transactions. In this framework
several problems, such as low concurrency rate, deadlocks and
starvation, handling of disconnections, and so on, have to be
solved [13].

Classical pessimistic solutions for concurrency control based
on Two Phase Locking (2PL) are not suitable: in fact, the long
duration of such a kind of transactions forces a long time
resource locking due to disconnecting or idle transactions, or,
in the opposite, a high rate of preventive aborts.

To limit such problems, optimistic approaches allow differ-
ent transactions to immediately and concurrently operate on
the various resources or by relaxing DBMS locking policies
or by replicating the shared data on user devices [11]. Anyway
such approaches could cause the management of a high
number of rollback operations on updated data when a high
rate of transaction conflicts occurs.

One of the first paper concerning this kind of approach was
proposed by [6], where an “optimistic scheme” is introduced,
resolving the synchronization of read-write conflicts using

“dummy” locks. Even if the dummy locks are effectively long-
term locks, they do not block the execution of transactions,
providing a suitable deadlock-free locking technique, obtained
pre-ordering the data items. A similar interesting approach is
the O2PL-MT (Optimistic 2PL for Mobile Transactions) [7]
that extends the optimistic version of 2PL (O2PL) to mobile
environments. In such a solution “read-blocks” are allowed
under request to transactions on distributed resources, while
“write-blocks” are differed until commit time. In [3] a concept
of “compensation” that tolerates weak or semantic atomicity is
proposed. Another more recent technique is the ASGT (Active
Serialization Graph Technique) [19], in which read-operations
on a given resource do not obstruct write-operations of a
generic transaction. By means of an apposite serialization
graph the transaction involved in not-serializable schedules are
aborted to reduce conflicts-queue and rollback costs.

Alternative techniques suggest a relaxation of consistency
property. To improve concurrency rate, transactions are al-
lowed to operate on inconsistent copies of data items. Prabhu
and Kumar [13] proposed an approach in which transac-
tions first perform their operations (a maximum number of
changes in given timeout is permitted) on local data replica
successively reconciliated with the data on the DBMS. Pitoura
and Bhargava [12] introduce a Clustering strategy, in which
distributed database data are subdivided in clusters on the
base of their semantic or geographical position and two kinds
of data replica from consistency point of view, “strict” and
“weak”, are used. In a first phase disconnected transactions
execute the commit on local weak cluster-data, while in the
second phase the local data are reconciliated with strict data,
if the case, generating the abort or rollback. Eventually, in
[17] the local data, on which disconnected transactions will
operate, are subdivided on the base of semantic criteria and
reconciliating operation are if necessary exploited to guarantee
consistency.

Other techniques focus their attention on isolation and
atomicity [14]. A first example is the Pre-Serialization pro-
posal [5] that preserves isolation for mobile and disconnected
long running transactions by associating themselves to “site
transactions” and by using serialization graphs to ensure
serializability. A second example is the IOT (Isolation Only
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Transactions) [10], in which transactions are subdivided in
“not-disconnected” and “disconnected” transactions: for the
first ones commit is immediately executed, for the second ones
the migration to a “pending” state is necessary and the commit
is executed only after a validation phase.

Most of the progress on the concurrency control theory
and 2PL protocols, have been also obtained in the Real Time
Data Base (RTDB) realm, characterized by having long and
complex transaction. A number of studies have been done on
this subject. In [4], for example, different algorithms and pro-
tocols are suggested to schedule transactions according to their
priorities. In [9], [8], a nested transaction model for mobile
real-time transactions is proposed, together with a divergence
control lock model based on prudent ordered sharing and a
Check-Out/Check-In protocol supporting disconnections: as a
result, DC/POS-PAI-2PL two-phase lock strategy integrating
these methods for mobile real-time transactions is eventually
proposed.

An other important area of related work is on nested
transactions. Among the more recent proposals, Vingralek et
al. [15] provide a flexible concurrency control mechanisms
for nested transactions that exploits semantics of transaction
operations.

In this paper we propose a novel method in order to
improve concurrency of long running transactions. Differently
from other techniques presented in the literature, we design
a hybrid approach between optimistic and pessimistic models.
Our basic idea consists of a “re-visitation” of the 2PL protocol,
in order to handle frequent disconnections or inactivity periods
of transactions, considering the semantics associated to the
related operations: in this way, we try to overcome both long
time resource locking and a high rate of preventive aborts;
moreover, exploiting a transaction “semantic compatibility”
based on the Weihl’s theory [18], we increase the overall
concurrency rate. In our approach we take into account that in
a lot of “real world” applications is not important to exactly
track the dynamic behavior of each “real entity” to allow the
correct execution of a transaction. This observation is surely
valid only for certain kinds of transaction operations.

The paper is organized as follows. Section II describes a
motivating example for our paper. Section III outlines the ar-
chitecture of the proposed system. Sections IV and V describe
the model and the algorithms for transaction management. The
aim of section VI is to demonstrate, by a model evaluation, the
possible advantages of our approach and a comparison with
2PL protocol. Open problems, on going work and concluding
remarks are discussed in section VII.

II. MOTIVATING SCENARIO

In order to understand the main aspects that our work is
addressing, we will discuss a motivating example, showing the
problems and discussing the weakness of traditional solutions.

Let us consider an hypothetical agency which sells, via web,
personalized package tours for visiting museums: a user buys
flight tickets, makes hotel reservation, rents a car and reserves
tickets for museums. The different information (flight tickets,

hotel info, etc...) are contained in a unique database and mobile
clients may be used in a network with frequent disconnections
(e.g. wireless network). A user ui, in general, may perform the
following actions: (i) select a flight by setting a departure date,
company, and so on; (ii) book the chosen flight; (iii) check for
hotel room availability; (iv) make a hotel reservation; (v) make
a ticket reservation for a museum; (vi) rent a car;...and so on.

Clearly, these actions are iteratively performed: when users
do not find an available hotel in a certain town, they can decide
to change return date or the scheduling of the tour. When they
are happy with all the selected options, they commit the whole
package tour. From the DBMS point of view, this process can
be simply schematized as follows:

begin transaction Ti

while UserNotHappy do
select FreeTickets from Flight where some conditions
if the case... then

update Flight set FreeTickets = FreeTickets -1
where some conditions

end if
select FreeTickets from Museum where some conditions
if the case... then

update Museum set FreeTickets = FreeTickets -1
where some conditions

end if
select FreeCars from Car where some conditions
if the case... then

update Car set FreeCars = FreeCars -1
where some conditions

end if
end while
commit
end transaction Ti

Using the traditional 2PL strategy, we can assume that Ti

requests a read-lock on Flight.FreeTickets and then moves to
a write-lock, when the user reserves the ticket. In this case, if
another user starts a transaction Tj thus acquiring the read-lock
on the same Flight.FreeTickets field, a deadlock can occur and
it can be solved aborting Ti and/or Tj. When the number of
requests increases, the number of aborted transactions could
become unacceptable. Alternatively, but still using a 2PL
strategy, we can assume that we know the semantic of the
transactions: in this case we can grant the write-lock to Ti

on Flight.FreeTickets. If the user does not quickly decide to
commit or abort the whole operation (e.g., due to network
disconnection, inactivity periods, etc...), a long time write-lock
occurs, and another user accessing to the same resource has
to wait.

Another widely used strategy consists of: (i) imposing
precise constraints on important resources (for example,
Flight.FreeTickets ≥ 0 ) and (ii) assuming that each user
operation is temporarily freezed and the whole transaction will
be executed when the user commits. Using such a strategy,
deadlocks become highly unfrequent, because both read and
write locks are released as quick as possible and the system
exploits the highest possible concurrency level among the
users. The drawback of this method is that no locks are held
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while the users are performing their actions, thus resulting in
boring, and sometimes dramatic, changes to several attributes
(e.g., no more flight tickets available and the whole journey
has to be replanned!).

These kinds of problems are avoided in the proposed
strategy. In particular, the main features of our approach
are: (i) to consider the semantic of operations generated by
transactions (ensuring a high degree of concurrency among
users for a certain kind of operations); (ii) to introduce the
concept of sleeping transaction, where a sleeping transaction
is a disconnected or idle transaction that does not have to be
aborted, but that could reconnect and try to end its work.

III. SYSTEM ARCHITECTURE

The proposed system offers a set of services to manage
transactions and is based on the following layers:

• Data Layer: this layer offers the functionalities to manage
and store application data that are contained in a Local
DataBase System (LDBS), a traditional relational DBMS.

• Middleware Layer: it is the core part of the entire
architecture. It represents our transactional manager mid-
dleware. It accepts user requests in terms of transactions,
generated by mobile or wired devices and then processes
them in according to the transaction concurrency man-
agement model, as will be described in the next section.
In particular, it manages: (i) transaction concurrency on
the base of their semantic compatibility, (section IV);
(ii) possible transaction deadlocks or starvation; (iii)
disconnections or inactivities of user clients. Moreover,
this module is wired connected to the LDBS server in
order to manage data on the local database.

• Application Layer: at this layer the user applications
coming from mobile or wired devices generate the trans-
actions that have to be scheduled.

In our approach the transactions are first managed by a
Global Transaction Manger (GTM-middleware), operating in a
virtual context on a set of virtual data – that are special images
of database data, “local” to each transaction. At commit time,
a special transaction, called Secure System Transaction (SST),
is then generated by the GTM to report the effective changes
from the virtual copies to the LDBS. At the middleware layer
only isolation and atomicity properties have to be ensured,
in the opposite, consistency and duration are delegated to
data layer DBMS. This approach improves the concurrency,
allowing, under some special conditions, a shared lock on
virtual data; moreover, it is possible to manage disconnections
(due to network problems) and user-inactivity, trying to resume
the previous work performed by a user transaction.

IV. THE PROPOSED MODEL

Our model of computation can be seen as an extension of
Weihl’s [18] approach.

Let us consider two kinds of entities, transactions and
objects. A transaction (that we denote with the symbols A,
B, C, etc...) accesses (reads and modifies) the object state, by
means of a set of operations that each object (denoted with the

symbols X, Y, Z, etc...) provides, and vice-versa, each object
can modify the state of a given transaction.

Generally speaking, a transaction can assume different op-
erating states during its life cycle. In particular, the set of
possible states that a transaction can assume is: Active – a
transaction is in such a state when it is normally running –,
Waiting – a transaction is in such a state when it is waiting for
a lock –, Sleeping – a transaction is in such a a state when it
has been inactive for a a given period of time –, Committing
– a transaction is in such a state if the user has requested the
commit and the related SST has not yet been terminated –,
Aborting – a transaction is in such a state when its job has to
be aborted, Committed – a transaction is in such a state when
the related SST has been performed –, Aborted – a transaction
is in such a state if its job has been aborted.

The global state of a given transaction A is defined by the
following information: Astate contains the operating state of
the transaction; Atemp contains, for each object X accessed by
the transaction, a replica of the object values on which all
the transaction operations will be operating; Atsleep

contains
the time in which the transaction has become sleeping; Atwait

contains, for each object X, the arrival time of the transaction
in the related object wait-queue.

We also assume that the operation semantics in a transaction
is a-priori known, so that we can associate to the transactions
a set of classes of operation, i.e. read, insert, delete and update.

Each object can be seen as an abstract data type, char-
acterized by a state and a set of methods that can modify
such a state. In particular, its state is defined by means of
the following information: Xpermanent contains the committed
value (the set of committed values for each data member, if
X is a structured type) of the object; Xpending is the set of
transactions – associated to their class of operations (operation
type and object data member) – that have obtained the grant
to modify the values of the object X; Xwaiting is the set of
transactions – associated to their class of operations – that are
waiting for accessing the object X; Xcommitting/Xcommitted

is the set of transactions that are going to perform/have
performed the commit on the DBMS; Xaborting is the set
of transactions that are trying to perform an abort of their
operations; Xsleeping contains the set of transactions, operating
on X, that are sleeping; Xread contains, for each transaction
operating on X, the value of X – as retrieved from the database
– before any kind of modifications; Xnew contains, for each
transaction operating on X, the value of X that will be stored in
the database when the commit will be accepted; Xtc contains,
for each transaction that has performed the commit on X, the
commit time.

In a given time a transaction can access to only a component
of a given object. In particular, each transaction will operate –
for each object involved in its execution – on a set of virtual
data Atemp, and only at commit time the results of execution
will be stored in the DBMS. The computation is assumed to be
event-based, and we will be focusing on those events regarding
the interaction between transactions and objects. In particular,
we consider the following kinds of events of interest:
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• Start, 〈begin,A〉, indicates that the transaction A is
started.

• Invocation, 〈op,X,A〉, indicates that A requests the grant
for a set of operations op (of the same class) on X (or on
its component, if X is a structured type).

• Local Commit/Global Commit, 〈commit,X,A〉 and
〈commit,A〉: the first one is the event informing the
object X (modified by A) that the transaction is requesting
a commit; the second one is the global commit of A.

• Local Abort/Global Abort, 〈abort,X,A〉 and 〈abort,A〉:
the firs one is the event informing the object X (modified
by A), that the transaction is requesting an abort, the
second one is the global abort of A.

• Local Sleep/Global Sleep, 〈sleep,X,A〉 and 〈sleep,A〉:
the first one is the event informing the object X that the
transaction A is sleeping; the second one is the state-
transition of A to the Sleeping state.

• Local Awakening/Global Awakening, 〈awake,X,A〉
and 〈awake,A〉: the first one is the event informing the
object X that A is awaking; the second one is the state-
transition of A from the Sleeping state.

• Unlock, 〈unlock,X〉 is the event informing the trans-
actions that the object X does’nt have more pending
operations.

We assume that: for a given transaction at most one pending
invocation of a single object data member at any time is
permitted; the invocation and commit events are allowed if and
only if a transaction is in the Active state; after performing its
operations, a transaction can commit or abort at one or more
objects, but not both for a given object; after a commit/abort
on a given object no operation is allowed for the current
transaction.

This allows to guarantee that the events sequence generated
by transactions on a given object X, is well-formed and all
atomicity properties can be ensured, as requested by [18].
We thus model the serial specification of an object X or a
transaction A (acceptable behavior of X and A in a sequential
environment), using a language defined on the state machines
S(X) and S(A).

On these machines, a transition function able to determine
the new state s depending on the previous state s′ is defined,
together with the event generated by a transaction or object,
T : (s′, event) → s.

Now we are in the position of introducing the concept
of compatibility among transaction operations (i.e. invocation
events), that is a specification of Weihl’s forward commutativ-
ity [18].

Definition 1 (Transaction Operations Compatibility): Two
invocation events ω1 and ω2 generated by two generic
transactions, A and B, are compatible iff ∀ state s of the
object X:

1) ω1 and ω2 are reffered to the same object data member,
2) T (T (s, ω1), ω2) = T (T (s, ω2), ω1)

T (T (s, ω1), ω2) �= ⊥,
3) there exists a reconciliating algorithm that can deter-

mine, knowing the object and transaction states, the

Class of operations Compatibilities
Read All classes

Insert/Delete No classes
update with assignment Read

update with add/sub operations Addition/Substratcion, Read
update with mult/div operations Multiplication/Division, Read

TABLE I

CLASS OF COMPATIBILITIES

final correct value to be stored in the database at the
transaction’s commit event.

The discussed concept of compatibility can be relaxed con-
sidering the “logical dependence” among object data members.
In other terms only transaction operations on logically depen-
dent items (e.g. quantity and price of a given product) can
generate a conflict, while operations on not-logical dependent
data members are compatible.

Addition/subtraction or multiplication/division of X (where
the object is supposed to be of atomic type) by a constant
value (i.e., X = X ± c, X = X · c, or X = X

c with c �= 0) are
examples of compatible operations.
A reconciliation algorithm for addition/subtraction is the fol-
lowing:

XAnew = AXtemp + Xpermanent − XAread (1)

A reconciliation algorithm for multiplication/subtraction is:

XAnew =
AXtemp

XAread

· Xpermanent (2)

We observe that assignment operation (i.e., X = c) is not
compatible with any kind of operations. We also note that the
data locked by a certain transaction can be modified by other
compatible operations pertaining to a different transaction. In
the following, for the sake of simplicity, we will assume no
difference between read operations finalized to update, and
write operations. Table 1 schematizes the class of operations
considered in our model and their related compatibilities. Table
2 shows an example of reconciliation between two transactions
performing simple addition operation on the same object.

We explicitly note that not all the possible sequences of
events are allowed. In fact, we assume that the sequence
of events E are submitted to the following constraints: (i)
a transaction A can execute on a given object component
only compatible operations; (ii) a transaction A can commit
or abort, in E but not both; (iii) a transaction A cannot
commit if it is waiting for an invocation and and cannot invoke
any operations after it commits; (iv) a sleeping transaction
A has to be awaken before to continue its execution. These
restrictions on transactions are intended to model some typical
uses of transactions: note that, constraints (ii) and (iii) are
traditional constraints of a transactional environment; (i) and
(iv) are specific of our model. In particular, (i) is justified
by the considered scenarios in which transaction during their
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A code B code Xpermanent XAread AXtemp XAnew XBread BXtemp XBnew
begin - 100 - - - - - -
read X begin 100 100 100 - - - -
X = X+1 read X 100 100 100 - 100 100 -
write X X=X+2 100 100 101 - 100 100 -
X = X+3 write X 100 100 101 - 100 102 -
write X - 100 100 104 - 100 102 -

req commit - 100 100 104 104 100 102 -
commit req commit 104 - - - 100 102 106

- commit 106 - - - - - -

TABLE II

EXAMPLE OF RECONCILIATIONS

execution usually perform just one kind of operations on the
data.

Eventually, before discussing the proposed transaction man-
agement algorithms, we give the following definition.

Definition 2 (Transaction Conflicts): Transactions A and B
are in conflict on X, (A,B) ∈ CONFLICTX, if A is operating
on X and B requests to perform an operation that is not
compatible with the set of current operations of A, or vice-
versa.

V. CONFLICT-BASED TRANSACTION MANAGEMENT

The proposed GTM implements a particular locking-based
protocol and its focus is the management of transactions
conflicts over an object X providing a sort of pre-serialization
of transactions to improve concurrency rate. The main purpose
of GTM is to handle both synchronous and asynchronous
events – such as invocations, commit or abort, transaction
sleep and awake, object unlocks – thus exploiting semantic
and compatibility between transaction operations.

In the following we show the transactions and the objects’
behaviors for each considered event. The global transaction
manager is, in a certain way, a sort of controller for the
state machines that manages the transaction conflicts on the
various database objects, thus allowing a pre-schedule of
transactions. Summing up, when a transaction is instantiated,
its state is Active. After a lock request on a given object,
the transaction can remain in the same state or migrate in
another state, depending on the following factors: current state
of the object; transaction operations to be executed; operations
of transactions that have locked the object. Once obtained a
lock on a given resource, a generic transaction will use the
replicated data AXtemp to perform its operations. Only at commit
event, the reconciliated data will be updated on the database.

It is clear how in this model a Sleeping transaction can
awake (we suppose that the sleep was due to user inactivity
or to disconnection for a temporary network fault), and tries to
finish its work if there were not incompatible operations that
have requested the lock on the same resources and operated
on the same data.

As discussed, from the GTM point of view only atomicity
and isolation properties have to be ensured, while consistency
and durability are guaranteed by generating secure system
transactions that will be managed by a classical DBMS. So at

Algorithm 1 GTM behavior for 〈begin,A〉
Postcondition:
Astate = Active

Algorithm 2 GTM behavior for 〈op,X,A〉
Precondition (compatible operations):
Astate = Active
(A,B) �∈ CONFLICTX ∀B ∈ (Xpending−Xsleeping)∪Xcommitting

Postcondition:
Xpending = Xpending ∪ (A, op)
XAread = Xpermanent

AX
temp = Xpermanent

Precondition (some not-compatible operations):
Astate = Active
∃B ∈ (Xpending − Xsleeping) ∪ Xcommitting s.t. (A,B) ∈
CONFLICTX

Postcondition:
Astate = Waiting
Atwait = Current T ime
Xwaiting = Xwaiting ∪ (A, op)
AX

temp = ⊥

the GTM level, classical lost update, uncommitted dependency
and inconsistent analysis are not solved but admissible.

It easy to demonstrate that, assuming no constraint on the
database objects, the schedule generated by GTM is serial-
izable. The presence of reconciliation algorithms assures that
the obtained schedule is the same of a typical locking-based
concurrency control method as 2PL. In particular the condi-
tions that ensure serialiazability are: the compatible operations
operate on virtual data and during transaction execution are

Algorithm 3 GTM behavior for 〈commit,X,A〉
Precondition:
Astate = Active ∨ Astate = Committing
A ∈ Xpending

� ∃B ∈ Xcommitting s.t. B �= A
Postcondition(� is the procedure implementing the reconc. alg.):
Astate = Committing
Xcommitting = Xcommitting ∪ (A, op)
XA

new = �(XA
read,AX

temp,Xpermanent)
AX

temp = ⊥
XA

read = ⊥
Xpending = Xpending − (A, op)
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Algorithm 4 GTM behavior for 〈commit,A〉
Precondition:
Astate = Committing
(A ∈ Xcommitting) (∀X involved in A execution)
XA

new �= ⊥ ∀X involved in A execution
Postcondition:
Xpermanent = XA

new ∀X involved in A execution
XA

new = ⊥ ∀X involved in A execution
Astate = Committed
Atwait = ⊥
Atsleep = ⊥
(∀X involved in A execution )(Xcommitting = Xcommitting−(A, op))
(∀X involved in A execution )(Xcommitted = Xcommitted ∪ (A, op))
(∀X involved in A execution )Xtc = Current T ime

Algorithm 5 GTM behavior for 〈abort,X,A〉
Precondition:
Astate = Active ∨ Astate = Aborting ∨ Astate = Waiting
A ∈ Xpending ∨ A ∈ Xwaiting

Postcondition:
Astate = Aborting
Xaborting = Xaborting ∪ A
AX

temp = ⊥
XA

read = ⊥
XA

new = ⊥
Xpending = Xpending − (A, op)

Algorithm 6 GTM behavior for 〈abort,A〉
Precondition:
Astate = Aborting
XA

new = ⊥ (∀X involved in A execution)
XA

read = ⊥ (∀X involved in A execution)
AX

temp = ⊥ (∀X involved in A execution)
Postcondition:
Astate = Aborted
Atwait = ⊥
Atsleep = ⊥
(∀X involved in A execution) (Xaborting = Xaborting − A)

Algorithm 7 GTM behavior for 〈sleep,X,A〉
Precondition:
Astate = Sleeping
A �∈ Xsleeping

Postcondition:
Xsleeping = Xsleeping ∪ A

Algorithm 8 GTM behavior for 〈sleep,A〉
Precondition (Ξ is a an oracle that returns TRUE if A is sleeping):
Astate = Active ∨ Astate = Waiting
Ξ(A)
Postcondition:
Astate = Sleeping
Atsleep = Current T ime

Algorithm 9 GTM behavior 1 for 〈awake,X,A〉
Precondition (no conflicts during sleeping-time):
Astate = Sleeping
A ∈ Xwaiting

(A,B) �∈ CONFLICTX (∀B ∈ Xpending ∪ Xcommitting)
(A,B) �∈ CONFLICTX (∀B ∈ Xcommitted s. t. XBtc > Atsleep)
Postcondition:
Xsleeping = Xsleeping − A
Xwaiting = Xwaiting − (A, op)
Xpending = Xpending ∪ (A, op)
XAread = Xpermanent

AXtemp = Xpermanent

Precondition (no conflicts during sleeping-time):
Astate = Sleeping
A �∈ Xwaiting

(A,B) �∈ CONFLICTX (∀B ∈ Xpending ∪ Xcommitting)
(A,B) �∈ CONFLICTX (∀B ∈ Xcommitted s. t. XBtc > Atsleep)
Postcondition:
Xsleeping = Xsleeping − A
Precondition (conflicts during sleeping-time):
Astate = Sleeping
(∃B ∈ Xpending ∪ Xcommitted ∪ Xcommitting) s.t. (A,B) ∈
CONFLICTX

(∃BXcommitted) s. t. XBtc > Atsleep ∧ (A,B) ∈ CONFLICTX

Postcondition:
Astate = Aborted
Atsleep = ⊥
Atwait = ⊥
(∀X involved in A execution) AX

temp = ⊥
(∀X involved in A execution) Xsleeping = Xsleeping − A
(∀X involved in A execution) Xwaiting = Xwaiting − A
(∀X involved in A execution) Xpending = Xpending − A
(∀X involved in A execution) XA

read = ⊥
∀X involved in A execution) XA

new = ⊥

Algorithm 10 GTM behavior for 〈awake,A〉
Precondition:
Astate = Sleeping
(∀X involved in A execution) A �∈ Xsleeping

Postcondition:
Astate = Active
Atwait = ⊥

not able to modify the database data; the effective commit is
managed by LDBS by a classical 2PL protocol; the execution
order of compatible operations does not the affect the final
values of the database data.

VI. EXPERIMENTAL RESULTS

A. Model Evaluation

In this subsection we report several experiments finalized
to theoretically evaluate the transaction execution time and
the abort percentage of sleeping transactions of our model
respect to the classical 2PL. In particular, the first parameter
has been evaluated at the variation of: (i) number of transaction
conflicts, (ii) number of not compatible transaction operations.
Let c and τe be respectively the number of transaction conflicts
and the execution time in the ideal condition (no conflicts
are verified) of a single transaction, we assume that the 2PL
average execution time is given by the following equation:

134



Algorithm 11 GTM behavior for unlock event 〈unlock,X〉
Precondition:
Xpending = ⊥
Postcondition:
(∀ A ∈ ϑ(Xwaiting − Xsleeping))(Astate = Active)
(∀ A ∈ ϑ(Xwaiting − Xsleeping))(Xpending = Xpending ∪ (A, op))
(∀ A ∈ ϑ(Xwaiting − Xsleeping))(Xwaiting = Xwaiting − (A, op))
(∀ A ∈ ϑ(Xwaiting − Xsleeping))(Atwait = ⊥)

τ2PL
e (c) =

(n − c) · τe + c · (τe + τe

2 )
n

(3)

being n the number of total transactions. In fact, we suppose
that the arrival time of a conflicting transaction occurs in half
of execution time of the previous one. Note that no multiple
conflicts are considered.

In our model we take into account both the number of
transaction conflicts c and the number of not compatible
transaction operations i. We can model the probability of
having k not compatible conflicts among transactions as:

P(k) =
(Ci,k · Cn-i,c-k)

Cn,c
(4)

being Cz,m =
(

z
m

)
, z ≥ m, 0 if z ≥ m.

Considering such probability, the execution time (which
behavior is reported in Fig. 1 by fixing τe = 1) in our approach
is in the hypothesis if instantaneous execution of each system
secure transaction:

τour
e (c,i) =

min(i,c)∑

K=0

P(k) · τ2PL
e (5)

Fig. 1. Average transaction execution time

It is possible to observe that the 2PL execution time does
not depend on the number of not compatible operations and
grows in a linear manner as respect to the number of conflicts.
In our approach, we observe an increase of times as respect
to the number of transaction conflicts and the number of
not compatible transaction operations. However the times are
lower than 2PL ones because we do not take into account

the overhead due to the reconciliation operations and SST
execution.

Our method is more suitable as respect to 2PL when
we have medium-high percentage of conflicts and medium-
low percentage of incompatibilities. In our best case (c =
100%, i = 0) the proposed approach presents a theoretical
time improvement of 50% respect to 2PL: such enhancement
is significant for high values of τe, in other terms for long
running transactions.

In the opposite the abort percentage of sleeping transactions
has been analyzed at the variation of: (i) number of transaction
conflicts, (i) number of not compatible transaction operations,
(iii) percentage of sleeping transactions. In the 2PL approach
we can simply consider the abort percentage as function of
sleeping timeout. Instead, in our approach such percentage
can be computed by product of the probabilities (percentage)
of having a sleep (e.g. due to a disconnection) P(d), a conflict
P(c) and an incompatibility P(i): P(Abort) = P(d) ·P(c) ·P(i).

In Fig. 2 the abort percentage is reported in function of
the percentage of transaction conflicts and the percentage of
disconnected transactions for increasing value of the number
of not compatible transaction operations.

Fig. 2. Abort percentage of disconnected/sleeping transactions

B. GTM performances

The main aim of this subsection is to quantitatively eval-
uate the performances of our GTM (implemented in Phyton
technology) in terms of transaction execution time and abort
percentage.

Starting from a data set constituted by 1000 transactions
that perform a subtraction (e.g. clients with a mobile device
that book a flight ticket Xq = Xq − 1) or assignment (e.g
admin with a fixed device that set the price Xp = 100)
operation on a single resource of a set of 5 database objects,
we have automatically generated 15 classes of transactions
considering α (1 − α) as probability that a transaction per-
forms a subtraction (assignment) operation, β as disconnection
probability of subtraction transactions (no disconnections are
considered for transactions with assignment), γi

j(
∑

j γ = 1) as
the probability that the i-th transaction works on j-th database
object.
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Fig. 3. GTM perfomances

Thus each class is described by: C = 〈T , op,X , η〉, T
being the set of transaction belonging to the class, op is the
performed operation, X is the database object and η a boolean
variable that indicates if a transaction has a disconnection.
We suppose that all disconnections take place during the
transaction execution and that, assigned a label λ(1...1000)
indicating the arrival order of each transaction, the interarrival
time is 0.5 sec. Moreover we consider γi

j = 10%∀i.
The figure 3 reports the average execution time in sec. for

transaction at α probability variation by fixing β = 0.05 and
the abort percentage at β probability variation by fixing α =
0.7.

VII. CONCLUSIONS AND FUTURE WORKS

In this work we have proposed a novel approach for
managing concurrency of long running transactions, based
on commutativity theory. We have shown that such solution
presents, under certain conditions, different advantages as
respect to the 2PL original protocol.

A first problem of this model could be due to possible
conditions of starvation for incompatible transactions that try
to access to resources locked by different compatible transac-
tions. Possible solutions for this problem are: the introduction
of a transaction priority or the lock-deny on a given resource
for compatible transaction, if in the resource queue there are
a certain number of incompatible transactions that are in a
waiting state. A second problem is connected to the possibility
of a high rate of aborts due to the violation of integrity
constraints on the database, during the data reconciliation
process. A possible solution for this problem is to limit the
number of possible concurrent and compatible transactions on
a given resource, in function of the current value X of the
resource.

For what concerns deadlock, our model does not introduce
any further conditions respect to 2PL protocol. Classical
approaches as timeout or wait for graphs techniques can be
used to detect the deadlock presence. Eventually, we also
mention a last – but not least – problem. We have, in fact,
assumed that SST is always correctly executed: further studies
have to be devoted to the investigation of recovery strategies,
in case of SST failure.
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